FINSURG Logo

Functional Identification of Non-coding Sequences Using Random Forests

This page contains the set of data required to run FINSURF on your own variants using finsurf.py, and plot feature contributions for each individual variant using plot_contribution.py.

Data for finsurf.py

After cloning the FINSURF gitHub repository, download the following files to analyze your personnal variants in bed format:

Once downloaded, go to the finsurf directory and extract the files:


should extract this data set:

Data for plot_contribution.py

The plot_contribution.py python script will need very large files of data. A tar archive is available here:

Once downloaded, go to the finsurf directory and extract the files:


should extract this data set:
  • static/data/FINSURF_model_objects/full-model_woTargs_columns.txt
  • static/data/FINSURF_model_objects/rename_columns_model.tsv
  • static/data/FULL_FC_transition.tsv.gz
  • static/data/FULL_FC_transition.tsv.gz.tbi
  • static/data/FULL_FC_transversion.tsv.gz
  • static/data/FULL_FC_transversion.tsv.gz.tbi
  • static/data/NUM_FEATURES.tsv.gz
  • static/data/NUM_FEATURES.tsv.gz.tbi
  • static/data/SCALED_NUM_FEATURES.tsv.gz
  • static/data/SCALED_NUM_FEATURES.tsv.gz.tbi

Click here to contact us